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Motivation : High-dimensional data in genetics

* Prototype example datasets :
1. Switchgrass data

* Segregating plant polpulations grown in multiple sites
in multiple years (10 latitudes by 3 yrs for 4 traits)

* Traits : Biomass, Flowering time, Height, # of Tillers

* Information annotating the environments (ex.
Mm/max/av§ air temperatures, precipitation, Soil
ingredients, latitudes/longitude)

* Goal: Identify the genomic regions (QTL) relying on
latitude that accounts for weather patterns varying by
year using GWAS

(figure & data by Dr. Tom Juenger in Integrative Biology at UT-Austin)



F2 intercross between Gough Island mice and WSB/EiJ

Data from M. M. Gray, M. D. Parmenter, C. A. Hogan, I. Ford, R. J. Cuthbert, P. G. Ryan, K.
Broman, and B. A. Payseur. Genetics of rapid and extreme size evolution in island mice. Genetics,

201(1):213-228, 2015.
F2 intercross genotype probabilities (12,777 markers) excluding Chr X
Traits: body weights weekly measured for 16 weeks (1212 individuals x 16 traits)

Z : a matrix of B-spline(df=4), K0 =1



3. DO/HS data

Collected from Jackson laboratory by Drs. Vivek and Chesler
Subset of phenotypes : distance travel measured per 1 minute for 12 minutes (1452 individuals)
Allele probabilities (8 alleles x 106,047 markers excluding Chr X)

Challenges : large-sized allele probabilities (10GB) and genotype probabilities (115GB) >> out of
memory issue when reading and difficult in doing permutation test

May consider a way to estimate thresholds for LOD using diffusion processes



Figure from J. Agren et al. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Physiologist,194:1112-1122, 2012.

. Arabidopsis thaliana data

Data from J Agren et al. Genetic mappinﬁ of adaptation
reveals fitness tradeoffs in Arabidopsis thaliana. PNAS,
110(52): 21077-21082, 2013.

400 individuals (recombinant inbred lines)

Phenotype (the mean # of fruitsi)er seedlingdplanted in
Italy & Sweden, July/2009-June/2012) : considered as a
trait among 6 sites

2 genotypes : a(=0) from ltalian parent, b(=1) from
Swedish parent

Total 5 Chromosomes : 699 markers after imputation

Weather profile in both sites for K : soil, air
temperatures, or draught index

Our method: consistent results with detecting more QTL

Fig. 1 Map indicating the locations of the two study sites.



Data Structure

C'sxm(climatic information)

Gnxp(background genotypes),

p>n




Structure of B

* ex. In Arabidopsis data (n=400, m=6),
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Model : Multivariate Linear Mixed Model

Y=XBZ'+ R+ E,
where E(YY) = (Z ® X)B?, var(R?) = t*’K; @ K¢, var(E¥Y) =X Q1,.

* Y,«m: phenotypic trait values over m sites for n individuals

Xnxp, : D1 8enotypes or genotype probabilities (and/or covariates) with intercepts for a

candidate marker ( total candidate markers = p)

* Zmxq: q phenotypic low-dimensional covariates (e.g. contrasts, basis functions, etc.)

R: GxE random effects including high-dimensional column covariates
E : model or environment errors independent of R

K., K- (symmetric positive definite): genetic relatedness (genetic kinship), climate relatedness (climate
kinship)



P Multivariate linear mixed model (Kernel regression) : GEMMA (X. Zhou & M. Stephens.

Genome-wide efficient mixed model association, Nature Methods, 2014)

Y=XB+R+E,

Y'~MVN( (I,, ®X)B, Z;QK; + %01, ).

Challenges are :

high-dimensional fixed effects : By, (not accounting for interaction between column and row
covariates) = Bj,xq Using low covariates (basis functions, contrasts, etc.), Z;x4(q << m)

High-dimensional random effects : £; = 2K using climatic information (generated by
infinitesimal random GxE effects)

m(m+1)
2

Parameter estimation: pm+m(m+1) = pg+ 1+



Goal

* How to efficiently estimate B (a coefficient matrix: QTL main and interaction
effects), T4(an overall genetic variance among sites), and X (residual covariance
matrix)

* The objective is to maximize a log-likelihood function

= find maximum likelihood estimates (B, t2,X )

* Methods used : Expectation Conditional Maximization (ECM) + Speed restarting
Nesterov’s Accelerated Gradient scheme



Comparison in performance time and accuracy

* Competing method : GEMMA (general multivariate LMM run in C++)

Our method (TLMM) : run in Julia v1.0.3 & also a general multivariate LMM for comparison

Mouse HS1940 data : n=1940 individuals, m=3 traits, p= 967 (Chr 1) for TLMM, 950 for GEMMA in
11182 candidate markers (computing a genetic kinship (Kg)), set K¢ = I,,, for TLMM (no gxe in data)

Performance time : alternating full update (all parameters) and partial update (B only)

MVLMM GEMMA (C++) 10.9 sec
MVLMM Julia 7.5 sec
TLMM (ours) Julia 6.5 sec

* Version info: OS: Linux Debian 4.19.37-5,
CPU: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (8 threads)
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* Accuracy

Nesterov+ ECM (alternating two
types of updates)

MVLMM MVLMM TLMM(ours)

* MLE for ¥4 in the null model e MLE for ¥4 in the null model e MLE for 7% in the null model
0.4076 0.4526 0.7160 (X, = t2I)

-0.1665 0.4519 -0.1848 0.5019

-0.1538 0.0028 1.2235 -0.1707 0.0030 1.3594

e MLE for X, in the null model e MLE for X5 in the null model e MLE for X5 in the null model
0.7487 0.7034 0.6589

-0.1690 0.9055 -0.1505 0.8553 -0.1814 0.8186

-0.0400 -0.0003 0.6376 -0.0229 -0.0005 0.5016 -0.0546 0.0016 0.6183

e MLE log-likelihood e MLE log-likelihood e MLE log-likelihood

-7858.4450 -7858.4450 -7883.2440
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Analysis of F2 intercrosses between Gough Island mice and WSB/EiJ

e Data from M. M. Gray, M. D. Parmenter, C. A. Hogan, I. Ford, R. J. Cuthbert, P. G. Ryan, K.
Broman, and B. A. Payseur. Genetics of rapid and extreme size evolution in island mice. Genetics,

201(1):213-228, 2015.
* F2 intercross genotype probabilities (12,777 markers) excluding Chr X
* Traits: body weights weekly measured for 16 weeks (1212 individuals x 16 traits)

e Z:amatrix of B-spline(df=4), K, = 1
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Figure 3 Body weight (top panels)
and growth rate (bottom panels)
for males (left) and females (right),
as a function of age in weeks, for
a sample of Gough Island mice (Gl,
green) and WSB mice (purple) raised
in the lab. Individual body weight
curves were lightly smoothed using
cubic splines; the growth rate curves
were estimated as the first derivative
of the fitted splines. Thicker curves
follow the group averages.
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Figure 4 Body weight (top panels)
and growth rate (bottom panels)
for males (left) and females (right),
as a function of age in weeks, for
the F, mice. In each panel there are
three shaded regions; the darkest
region covers the middle third of
the individuals; the next-darkest
two-thirds, and the lightest re-
gion all mice. The blue curve is
for the average of the F, mice.
The green and purple curves are
for the averages of Gough Island
and WSB mice, respectively, asin
Figure 3.
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MULTIVARIATE 1D genome scan with « = 0.1,0.05 vs. r/qgtl

* Z=B-spline(df=4)
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Figure 6 Profile SLOD curves for the selected multiple-QTL models for body
weight and growth rate. The location of each QTL was varied, one at a time,
with all other QTL fixed at their estimated locations, and the multiple-QTL
model was compared to the model with the given QTL omitted.
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Multivariate (additive) 2D genome scan : Z= B-spline(df=4)

chrl0
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Max Effect Plots .
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Max Effect Plots .
@ Chr 8
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Body weight : Chrl0@14.4062702527937 Body weight : Chrl0@57.8943171756334
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Summary

Fast implementation for multivariate LMM handling low- and high- dimensional covariates

Applications : multivariate LMM for multiple traits, time-valued phenotypic curves (functional
data analysis approach)

Our LMM set up (Z, 72K, ) : dimension reduction in parameter estimation, faster than GEMMA,
and approximately the same result as GEMMA'’s

Simulation results: relatively insensitive to different K.’s; currently, recommend K. = I for fast
computation

1D &2D genome scans with LOCO option, permutation test, stepwise model selection(forward
selection/backward elimination) by 1D & 2D scans, scan for environment factors (ongoing!)

Future research: 3-d array data ( multiple location/year or multiple location/trait combination,
images, etc.) using tensors, threshold estimation for LOD using diffusion processes
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Switchgrass (29 sites:10 latitudes by 3 yrs): Biomass (raw)
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